This paper presents a lightweight, efficient calibration neural network model for denoising low-cost microelectromechanical system (MEMS) gyroscope and estimating the attitude of a robot in real-time. The key idea is extracting local and global features from the time window of inertial measurement units (IMU) measurements to regress the output compensation components for the gyroscope dynamically. Following a carefully deduced mathematical calibration model, LGC-Net leverages the depthwise separable convolution to capture the sectional features and reduce the network model parameters. The Large kernel attention is designed to learn the long-range dependencies and feature representation better. The proposed algorithm is evaluated in the EuRoC and TUM-VI datasets and achieves state-of-the-art on the (unseen) test sequences with a more lightweight model structure. The estimated orientation with our LGC-Net is comparable with the top-ranked visual-inertial odometry systems, although it does not adopt vision sensors. We make our method open-source at: https://github.com/huazai665/LGC-Net
翻译:本文介绍了一个轻量、高效校准神经网络模型,用于实时解密低成本微电子机械系统(MEMS)陀螺仪和估计机器人的态度。关键的想法是从惯性测量单位(IMU)测量时间窗口中提取本地和全球特征,以动态地递减陀螺仪的输出补偿组件。在经过仔细推算的数学校准模型之后,LGC-Net利用深度分解的深度分解熔来捕捉部分特性并减少网络模型参数。大型内核注意旨在更好地了解远程依赖性和特征表现。在EuRoC和TUM-VI数据集中评估了拟议的算法,并在(不见的)测试序列上取得了最轻量的模型结构的状态。我们LGC-Net的估计方向与顶级直观-内脏测量系统相当,尽管它没有采用视觉传感器。我们在https://github5/Lazamahi66上采用了我们的方法开源的方法:https://gith5/LAzamasqual66。