Knowledge graph completion (KGC) aims to discover missing relations of query entities. Current text-based models utilize the entity name and description to infer the tail entity given the head entity and a certain relation. Existing approaches also consider the neighborhood of the head entity. However, these methods tend to model the neighborhood using a flat structure and are only restricted to 1-hop neighbors. In this work, we propose a node neighborhood-enhanced framework for knowledge graph completion. It models the head entity neighborhood from multiple hops using graph neural networks to enrich the head node information. Moreover, we introduce an additional edge link prediction task to improve KGC. Evaluation on two public datasets shows that this framework is simple yet effective. The case study also shows that the model is able to predict explainable predictions.
翻译:知识图完成 (KGC) 旨在发现查询实体的缺失关系。 以文本为基础的当前模型利用实体名称和描述来推断向上实体和某种关系提供的尾端实体。 现有方法也考虑向上实体的邻里。 但是, 这些方法倾向于使用平板结构来模拟邻里, 并且仅限于1个hop邻居。 在这项工作中, 我们提议了一个加强邻里知识图完成的节点框架。 它用图形神经网络从多个跳点来模拟领导实体邻里, 以丰富头节点信息 。 此外, 我们引入了额外的边缘链接预测任务来改进 KGC 。 对两个公共数据集的评估显示这个框架简单而有效 。 案例研究还表明, 模型能够预测可解释的预测 。