Code obfuscation aims at protecting Intellectual Property and other secrets embedded into software from being retrieved. Recent works leverage advances in artificial intelligence with the hope of getting blackbox deobfuscators completely immune to standard (whitebox) protection mechanisms. While promising, this new field of AI-based blackbox deobfuscation is still in its infancy. In this article we deepen the state of AI-based blackbox deobfuscation in three key directions: understand the current state-of-the-art, improve over it and design dedicated protection mechanisms. In particular, we define a novel generic framework for AI-based blackbox deobfuscation encompassing prior work and highlighting key components; we are the first to point out that the search space underlying code deobfuscation is too unstable for simulation-based methods (e.g., Monte Carlo Tres Search used in prior work) and advocate the use of robust methods such as S-metaheuritics; we propose the new optimized AI-based blackbox deobfuscator Xyntia which significantly outperforms prior work in terms of success rate (especially with small time budget) while being completely immune to the most recent anti-analysis code obfuscation methods; and finally we propose two novel protections against AI-based blackbox deobfuscation, allowing to counter Xyntia's powerful attacks.
翻译:代码模糊化的目的是保护知识产权和软件中所含的其他秘密不被检索。 最近的工作利用了人工智能的进步,希望使黑匣子的隐形操作器完全不受标准(白盒)保护机制的保护。 这个基于 AI 的黑盒隐形操作器的新领域仍然处于萌芽阶段, 很有希望。 在文章中, 我们深化了基于 AI 的黑盒分解法的状态, 有三个关键方向: 理解当前的最新状态, 改进该状态, 设计专门的保护机制。 特别是, 我们定义了一个基于 AI 的黑盒分解黑盒的新型通用框架, 包括先前的工作和突出关键组成部分; 我们首先指出, 以 AI 黑盒 黑盒 的 黑盒 分解 工具的搜索空间对于基于模拟的方法来说过于不稳定 ( 例如, 蒙特 卡洛 特雷斯 搜索 ), 并倡导使用强健健的方法, 比如, 优化基于 AI 黑盒 的 Dobfustor Xyntia, 大大超越了之前的黑盒操作, 最终建议采用 快速预算法, 彻底地将 进行反反 反 反 反 的反 。