While distributed training significantly speeds up the training process of the deep neural network (DNN), the utilization of the cluster is relatively low due to the time-consuming data synchronizing between workers. To alleviate this problem, a novel Hierarchical Parallel SGD (HPSGD) strategy is proposed based on the observation that the data synchronization phase can be paralleled with the local training phase (i.e., Feed-forward and back-propagation). Furthermore, an improved model updating method is unitized to remedy the introduced stale gradients problem, which commits updates to the replica (i.e., a temporary model that has the same parameters as the global model) and then merges the average changes to the global model. Extensive experiments are conducted to demonstrate that the proposed HPSGD approach substantially boosts the distributed DNN training, reduces the disturbance of the stale gradients and achieves better accuracy in given fixed wall-time.


翻译:虽然分布式培训大大加快了深神经网络(DNN)的培训进程,但由于工人之间数据同步耗时,该集群的利用率相对较低。为缓解这一问题,根据数据同步阶段可与当地培训阶段(即向前进和后回推进)平行同步的观察,提出了一个新的等级平行SGD(HPSGD)战略。此外,对改进的更新模式方法进行了合并,以纠正引入的变换梯度问题,该模式要求更新复制版(即具有与全球模型相同参数的临时模型),然后将平均变化与全球模型合并。进行了广泛的实验,以证明拟议的HPSGD方法可大大促进分布式DNN培训,减少变换梯度的干扰,提高固定墙时间的准确性。

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Arxiv
9+阅读 · 2019年4月19日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
4+阅读 · 2019年4月9日
Arxiv
17+阅读 · 2019年3月28日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员