Computing proposed exact $G$-optimal designs for response surface models is a difficult computation that has received incremental improvements via algorithm development in the last two-decades. These optimal designs have not been considered widely in applications in part due to the difficulty and cost involved with computing them. Three primary algorithms for constructing exact $G$-optimal designs are presented in the literature: the coordinate exchange (CEXCH), a genetic algorithm (GA), and the relatively new $G$-optimal via $I_\lambda$-optimality algorithm ($G(I_\lambda)$-CEXCH) which was developed in part to address large computational cost. Particle swarm optimization (PSO) has achieved widespread use in many applications, but to date, its broad-scale success notwithstanding, has seen relatively few applications in optimal design problems. In this paper we develop an extension of PSO to adapt it to the optimal design problem. We then employ PSO to generate optimal designs for several scenarios covering $K = 1, 2, 3, 4, 5$ design factors, which are common experimental sizes in industrial experiments. We compare these results to all $G$-optimal designs published in last two decades of literature. Published $G$-optimal designs generated by GA for $K=1, 2, 3$ factors have stood unchallenged for 14 years. We demonstrate that PSO has found improved $G$-optimal designs for these scenarios, and it does this with comparable computational cost to the state-of-the-art algorithm $G(I_\lambda)$-CEXCH. Further, we show that PSO is able to produce equal or better $G$-optimal designs for $K= 4, 5$ factors than those currently known. These results suggest that PSO is superior to existing approaches for efficiently generating highly $G$-optimal designs.


翻译:用于应对表面模型的精确的计算建议为美元-最佳设计是一个困难的计算方法,在过去20年中,通过算法开发得到了渐进式的改进。这些最佳设计在应用中没有得到广泛的考虑,部分原因是计算这些设计所涉及的困难和成本。在文献中提出了建造精确的G$-最佳设计的三个主要算法:协调交换(CEXCH),基因算法(GA),以及相对新的通过美元-最优度算法($I ⁇ lambda$-最优度算法(GG(I ⁇ lambda)$-CEXCH)得到的改进。部分是为了解决巨大的计算成本。粒子温度优化(PSO)在许多应用中得到了广泛的应用,但迄今为止,在最佳设计问题中却出现了相对较少的应用。在本文中,我们开发了一个PSO的扩展,以适应最佳设计问题。我们利用PSO为14种假设制作了最佳设计($2,3,4美元-我们设计系数,这是工业实验中常见的两个实验规模。我们将这些结果与G$的模型比目前更接近了。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员