Given a simplicial pair $(X,A)$, a simplicial complex $Y$, and a map $f:A \to Y$, does $f$ have an extension to $X$? We show that for a fixed $Y$, this question is algorithmically decidable for all $X$, $A$, and $f$ if and only if $Y$ has the rational homotopy type of an H-space. As a corollary, many questions related to bundle structures over a finite complex are likely decidable.
翻译:考虑到一对简单的一对美元(X,A)美元、一个简单的复合体美元和一张地图(f:A\至Y)美元,美元是否延期为X美元?我们证明,对于一个固定的美元,这个问题在逻辑上可以由所有X美元、A美元和美元来决定,如果而且只有在美元具有H-空间的合理同质类型的情况下,美元才能算出。作为推论,与限定的复合体的捆绑结构有关的许多问题都有可能被确定下来。