Multitask Gaussian processes (MTGP) are the Gaussian process (GP) framework's solution for multioutput regression problems in which the $T$ elements of the regressors cannot be considered conditionally independent given the observations. Standard MTGP models assume that there exist both a multitask covariance matrix as a function of an intertask matrix, and a noise covariance matrix. These matrices need to be approximated by a low rank simplification of order $P$ in order to reduce the number of parameters to be learnt from $T^2$ to $TP$. Here we introduce a novel approach that simplifies the multitask learning by reducing it to a set of conditioned univariate GPs without the need for any low rank approximations, therefore completely eliminating the requirement to select an adequate value for hyperparameter $P$. At the same time, by extending this approach with both a hierarchical and an approximate model, the proposed extensions are capable of recovering the multitask covariance and noise matrices after learning only $2T$ parameters, avoiding the validation of any model hyperparameter and reducing the overall complexity of the model as well as the risk of overfitting. Experimental results over synthetic and real problems confirm the advantages of this inference approach in its ability to accurately recover the original noise and signal matrices, as well as the achieved performance improvement in comparison to other state of art MTGP approaches. We have also integrated the model with standard GP toolboxes, showing that it is computationally competitive with state of the art options.


翻译:多任务高斯进程(MTGP)是高斯进程(GP)框架(GP)针对多产出回归问题的解决方案,根据观察结果,不能将递减者的$T元素视为有条件的独立。标准MTGP模型假定,存在一个多任务共变矩阵,作为跨任务矩阵的函数,并有一个噪声共变矩阵。这些矩阵需要以低级别简化顺序来近似于美元P$的排序,以便把从多产出回归问题中学习的参数数量从2美元减少到1美元TP美元。这里,我们引入了一种新的方法,通过将其简化为一套有条件的单任务共变后学习要素来简化多任务学习内容,而不需要任何低级别的近似,从而完全消除了为超参数矩阵选择适当价值的要求。同时,通过将这一方法扩大等级和近似模式,在只学习2T$参数之后,能够恢复多任务和噪声调矩阵的参数数量。 避免将多任务组合学习简化多任务后,将多任务学习简化的多任务学习内容简化的元素,将它简化成一套有条件的学习课程,将其简化成一套有条件的全套单,从而精确地验证,并降低模型的精确的精确的计算方法,作为模型的模型的精确的精确的精确的精确的精确的精确的精确的计算方法。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
54+阅读 · 2020年12月15日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
专知会员服务
159+阅读 · 2020年1月16日
深度学习算法与架构回顾
专知会员服务
80+阅读 · 2019年10月20日
已删除
将门创投
3+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员