How does one generalize differential geometric constructs such as curvature of a manifold to the discrete world of graphs and other combinatorial structures? This problem carries significant importance for analyzing models of discrete spacetime in quantum gravity; inferring network geometry in network science; and manifold learning in data science. The key contribution of this paper is to introduce and validate a new estimator of discrete sectional curvature for random graphs with low metric-distortion. The latter are constructed via a specific graph sprinkling method on different manifolds with constant sectional curvature. We define a notion of metric distortion, which quantifies how well the graph metric approximates the metric of the underlying manifold. We show how graph sprinkling algorithms can be refined to produce hard annulus random geometric graphs with minimal metric distortion. We construct random geometric graphs for spheres, hyperbolic and euclidean planes; upon which we validate our curvature estimator. Numerical analysis reveals that the error of the estimated curvature diminishes as the mean metric distortion goes to zero, thus demonstrating convergence of the estimate. We also perform comparisons to other existing discrete curvature measures. Finally, we demonstrate two practical applications: (i) estimation of the earth's radius using geographical data; and (ii) sectional curvature distributions of self-similar fractals.
翻译:如何将不同几何构造( 如向离散的图形世界和其他组合结构的元体的曲度) 概括化 不同的几何构造( 如向离散的图形世界和其他组合结构的曲度)? 这一问题对于分析离散空间时间模型在量重度方面的分析、 预测网络科学中的网络几何以及数据科学的多重学习 。 本文的关键贡献是引入并验证对使用低度调调的随机图表的离散部分曲度的新的估计。 后者是用特定图形递增方法在具有恒定的部位曲线结构上构建的 。 我们定义了一种衡量扭曲的概念, 它将测量图度指标与底线的度相近得多 。 我们展示了如何精度的图形螺纹度算法, 以最小度扭曲的方式生成硬度随机随机随机的几何图形 。 我们为地区、 超度和 超度和 优度平偏度的平面图构建了随机的几何图 ; 我们验证了我们的曲线估测测算法 。 数值分析显示, 估计曲度的曲度错误减少了作为中度部分的内径直径直径的缩度, 。