This work presents an analysis of state-of-the-art learning-based image compression techniques. We compare 8 models available in the Tensorflow Compression package in terms of visual quality metrics and processing time, using the KODAK data set. The results are compared with the Better Portable Graphics (BPG) and the JPEG2000 codecs. Results show that JPEG2000 has the lowest execution times compared with the fastest learning-based model, with a speedup of 1.46x in compression and 30x in decompression. However, the learning-based models achieved improvements over JPEG2000 in terms of quality, specially for lower bitrates. Our findings also show that BPG is more efficient in terms of PSNR, but the learning models are better for other quality metrics, and sometimes even faster. The results indicate that learning-based techniques are promising solutions towards a future mainstream compression method.


翻译:这项工作对最新的基于学习的图像压缩技术进行了分析。 我们用KODAK数据集比较了Tensorflow压缩软件包中的8个模型,在视觉质量计量和处理时间方面比较了Tensorflow压缩软件包中的8个模型,结果与更好的便携图形(BPG)和JPEG2000编码器进行了比较。结果显示,与最快的基于学习的模型相比,JPEG2000执行时间最低,压缩速度为1.46x,压缩速度为30x。然而,基于学习的模型在质量方面比JPEG2000提高了质量,特别是比特率较低的比特率。我们的调查结果还显示,BPG在PNR方面的效率更高,但学习模型对其他质量计量器来说更好,有时甚至更快。结果显示,基于学习的技术是未来主流压缩方法的可行解决办法。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
MIT-深度学习Deep Learning State of the Art in 2020,87页ppt
专知会员服务
62+阅读 · 2020年2月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月20日
Compression of Deep Learning Models for Text: A Survey
Arxiv
15+阅读 · 2020年2月6日
Arxiv
5+阅读 · 2018年10月11日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ERROR: GLEW initalization error: Missing GL version
深度强化学习实验室
9+阅读 · 2018年6月13日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员