This work presents an analysis of state-of-the-art learning-based image compression techniques. We compare 8 models available in the Tensorflow Compression package in terms of visual quality metrics and processing time, using the KODAK data set. The results are compared with the Better Portable Graphics (BPG) and the JPEG2000 codecs. Results show that JPEG2000 has the lowest execution times compared with the fastest learning-based model, with a speedup of 1.46x in compression and 30x in decompression. However, the learning-based models achieved improvements over JPEG2000 in terms of quality, specially for lower bitrates. Our findings also show that BPG is more efficient in terms of PSNR, but the learning models are better for other quality metrics, and sometimes even faster. The results indicate that learning-based techniques are promising solutions towards a future mainstream compression method.
翻译:这项工作对最新的基于学习的图像压缩技术进行了分析。 我们用KODAK数据集比较了Tensorflow压缩软件包中的8个模型,在视觉质量计量和处理时间方面比较了Tensorflow压缩软件包中的8个模型,结果与更好的便携图形(BPG)和JPEG2000编码器进行了比较。结果显示,与最快的基于学习的模型相比,JPEG2000执行时间最低,压缩速度为1.46x,压缩速度为30x。然而,基于学习的模型在质量方面比JPEG2000提高了质量,特别是比特率较低的比特率。我们的调查结果还显示,BPG在PNR方面的效率更高,但学习模型对其他质量计量器来说更好,有时甚至更快。结果显示,基于学习的技术是未来主流压缩方法的可行解决办法。