Spherical videos, also known as \ang{360} (panorama) videos, can be viewed with various virtual reality devices such as computers and head-mounted displays. They attract large amount of interest since awesome immersion can be experienced when watching spherical videos. However, capturing, storing and transmitting high-resolution spherical videos are extremely expensive. In this paper, we propose a novel single frame and multi-frame joint network (SMFN) for recovering high-resolution spherical videos from low-resolution inputs. To take advantage of pixel-level inter-frame consistency, deformable convolutions are used to eliminate the motion difference between feature maps of the target frame and its neighboring frames. A mixed attention mechanism is devised to enhance the feature representation capability. The dual learning strategy is exerted to constrain the space of solution so that a better solution can be found. A novel loss function based on the weighted mean square error is proposed to emphasize on the super-resolution of the equatorial regions. This is the first attempt to settle the super-resolution of spherical videos, and we collect a novel dataset from the Internet, MiG Panorama Video, which includes 204 videos. Experimental results on 4 representative video clips demonstrate the efficacy of the proposed method. The dataset and code are available at https://github.com/lovepiano/SMFN_For_360VSR.


翻译:球形视频,也称为 ang{360} (panorama) (panorama) 视频,可以用各种虚拟现实设备查看,如计算机和头顶显示器等。 它们吸引了许多人的兴趣, 因为观看球形视频时可以体验到惊人的沉浸状态。 但是, 捕捉、 储存和传输高分辨率球形视频非常昂贵。 在本文中, 我们提议建立一个新颖的单一框架和多框架联合网络( SMFN), 用于从低分辨率输入中恢复高分辨率球形视频。 为了利用像素级别的跨框架一致性, 使用可变的调动来消除目标框架特征图及其相邻框架之间的运动差异。 设计了一个混合关注机制, 以加强功能代表能力。 双重学习策略是为了限制解决方案的空间, 以便找到更好的解决方案。 提议了一个基于加权中方错误的新式损失功能, 以强调赤道区域的超级分辨率。 这是第一次尝试解决超分辨率视频的超级分辨率, 并且我们在互联网上收集新版数据集的目标框图和相框的相图图集, 将MGPanama/ prealmama 演示结果 。

1
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Single-frame Regularization for Temporally Stable CNNs
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
Arxiv
5+阅读 · 2018年3月30日
VIP会员
相关资讯
简评 | Video Action Recognition 的近期进展
极市平台
20+阅读 · 2019年4月21日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员