We propose Narrowest Significance Pursuit (NSP), a general and flexible methodology for automatically detecting localised regions in data sequences which each must contain a change-point, at a prescribed global significance level. Here, change-points are understood as abrupt changes in the parameters of an underlying linear model. NSP works by fitting the postulated linear model over many regions of the data, using a certain multiresolution sup-norm loss, and identifying the shortest interval on which the linearity is significantly violated. The procedure then continues recursively to the left and to the right until no further intervals of significance can be found. The use of the multiresolution sup-norm loss is a key feature of NSP, as it enables the transfer of significance considerations to the domain of the unobserved true residuals, a substantial simplification. It also guarantees important stochastic bounds which directly yield exact desired coverage probabilities, regardless of the form or number of the regressors. NSP works with a wide range of distributional assumptions on the errors, including Gaussian with known or unknown variance, some light-tailed distributions, and some heavy-tailed, possibly heterogeneous distributions via self-normalisation. It also works in the presence of autoregression. The mathematics of NSP is, by construction, uncomplicated, and its key computational component uses simple linear programming. In contrast to the widely studied "post-selection inference" approach, NSP enables the opposite viewpoint and paves the way for the concept of "post-inference selection". Pre-CRAN R code implementing NSP is available at https://github.com/pfryz/nsp.


翻译:我们提出“最狭义的追求” (NSP),这是一个在数据序列中自动检测本地化区域的一般和灵活的方法,每个区域都必须在一定的全球意义水平上包含一个变化点。这里,变化点被理解为一个基本线性模型参数的突变。 NSP 的工作方法是在数据的许多区域安装假设线性模型,使用某种多分辨率的光线性损失,并找出线性明显违反的最短间隔。随后,程序会继续向左和右循环,直到找不到任何进一步的重大间隔。多分辨率上调损失是 NSP 的一个关键特征,因为它能够将重要考虑转移到未观测的真实残余领域,大大简化。它还保证了重要的孔性界限,直接产生准确的覆盖概率,而不论内向后方的形态或数量。 NSP 继续使用关于错误的分布假设范围很广,包括有已知或未知的直线性偏差的面、一些浅尾调的 NSP 调值损失是 NSP 的相反特征, 因为它能够将重要考虑转移到未观测的真实性领域。

0
下载
关闭预览

相关内容

对于给定d个属性描述的示例x=(x1,x2,......,xd),通过属性的线性组合来进行预测。一般的写法如下: f(x)=w'x+b,因此,线性模型具有很好的解释性(understandability,comprehensibility),参数w代表每个属性在回归过程中的重要程度。
专知会员服务
76+阅读 · 2021年3月16日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月25日
Mixed Effects Envelope Models
Arxiv
0+阅读 · 2021年3月24日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
0+阅读 · 2021年3月23日
Arxiv
0+阅读 · 2021年3月23日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年3月25日
Mixed Effects Envelope Models
Arxiv
0+阅读 · 2021年3月24日
Arxiv
0+阅读 · 2021年3月24日
Arxiv
0+阅读 · 2021年3月23日
Arxiv
0+阅读 · 2021年3月23日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Top
微信扫码咨询专知VIP会员