We demonstrate the power of Gibbs point process models from the spatial statistics literature when applied to studies of resolved galaxies. We conduct a rigorous analysis of the spatial distributions of objects in the star formation complexes of M33, including giant molecular clouds (GMCs) and young stellar cluster candidates (YSCCs). We choose a hierarchical model structure from GMCs to YSCCs based on the natural formation hierarchy between them. This approach circumvents the limitations of the empirical two-point correlation function analysis by naturally accounting for the inhomogeneity present in the distribution of YSCCs. We also investigate the effects of GMCs' properties on their spatial distributions. We confirm that the distribution of GMCs and YSCCs are highly correlated. We found that the spatial distributions of YSCCs reaches a peak of clustering pattern at ~250 pc scale compared to a Poisson process. This clustering mainly occurs in regions where the galactocentric distance >~4.5 kpc. Furthermore, the galactocentric distance of GMCs and their mass have strong positive effects on the correlation strength between GMCs and YSCCs. We outline some possible implications of these findings for our understanding of the cluster formation process.
翻译:我们从空间统计文献中展示了Gibbs点进程模型在应用到确定星系的研究时的力量。我们严格分析M33星层群体中物体的空间分布,包括巨型分子云和年轻星群群候选体。我们根据自然形成等级选择了从GMC到YSCC的等级模式结构。这种方法通过自然计算YSCCs分布中存在的不均匀性,规避了经验性两点相关功能分析的局限性。我们还调查了GGCs特性对其空间分布的影响。我们确认,GMCs和YSCCs分布高度相关。我们发现,与Poisson进程相比,YSCs的空间分布达到聚积模式的高峰,即~250pc。这种聚主要发生在星际中心距离=4.5kpc的地区。此外,GMCs及其质量的伽拉克至中心距离对GGCs及其质量对其空间分布空间分布的关联性影响产生了强烈的正面影响。我们发现,GMCs和YSCCs的形成过程可能具有的影响。