Measurements of response inhibition components of reactive inhibition and proactive inhibition within the stop signal paradigm have been of special interest for researchers since the 1980s. While frequentist nonparametric and Bayesian parametric methods have been proposed to precisely estimate the entire distribution of reactive inhibition, quantified by stop signal reaction times(SSRT), there is no method yet in the stop-signal task literature to precisely estimate the entire distribution of proactive inhibition. We introduce an Asymmetric Laplace Gaussian (ALG) model to describe the distribution of proactive inhibition. The proposed method is based on two assumptions of independent trial type(go/stop) reaction times, and Ex-Gaussian (ExG) models for them. Results indicated that the four parametric, ALG model uniquely describes the proactive inhibition distribution and its key shape features; and, its hazard function is monotonically increasing as are its three parametric ExG components. In conclusion, both response inhibition components can be uniquely modeled via variations of the four parametric ALG model described with their associated similar distributional features.


翻译:20世纪80年代以来,研究人员一直对中继信号范式内反应抑制和主动抑制的测量部分特别感兴趣。虽然提议采用常态非参数和巴伊西亚参数方法精确估计反应抑制(用停止信号反应时间量化)的整个分布,但是在停止信号任务文献中还没有方法精确估计主动抑制的整个分布。我们引入了Asymite Laplace Gaussian(ALG)模型来描述主动抑制的分布。拟议方法以独立试验类型(go/st)反应时间和Ex-G(Ex-G)模型的两种假设为基础。结果显示,四个参数模型(ALG)单独描述主动抑制分布及其主要形状特征;其危险功能与三个参数ExG组件一样,单词性增加。最后,两种反应抑制部分可以通过所描述的四种对准ALG模型及其相类似的分布特征的变异来独特的模型模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
已删除
将门创投
3+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Arxiv
0+阅读 · 2021年4月4日
An active inference model of collective intelligence
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
91+阅读 · 2020年7月4日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
已删除
将门创投
3+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员