Geometric complexity theory (GCT) is an approach towards separating algebraic complexity classes through algebraic geometry and representation theory. Originally Mulmuley and Sohoni proposed (SIAM J Comput 2001, 2008) to use occurrence obstructions to prove Valiant's determinant vs permanent conjecture, but recently B\"urgisser, Ikenmeyer, and Panova (Journal of the AMS 2019) proved this impossible. However, fundamental theorems of algebraic geometry and representation theory grant that every lower bound in GCT can be proved by the use of so-called highest weight vectors (HWVs). In the setting of interest in GCT (namely in the setting of polynomials) we prove the NP-hardness of the evaluation of HWVs in general, and we give efficient algorithms if the treewidth of the corresponding Young-diagram is small, where the point of evaluation is concisely encoded as a noncommutative algebraic branching program! In particular, this gives a large new class of separating functions that can be efficiently evaluated at points with low (border) Waring rank.
翻译:几何复杂度理论(GCT)是通过代数几何和代表论理论将代数复杂等级区分开来的一种方法。最初,Mulmuley和Sohoni提议(SIAM J Comput 2001,2008年)使用时阻力来证明Valiant的决定因素与永久猜想,但最近,B\'urgisser、Ikenmeyer和Panova(AMS 2019年的Journal)证明了这种不可能。然而,代数几何和代表论的基本理论认为,使用所谓的最高重量矢量(HWVs)可以证明GCT中每个较低约束的值。在设定对GCT的兴趣时(即多数值设置中),我们证明了对一般HWVs的评价的NP-硬性,我们给出了有效的算法,如果相应的You-diagram的树边很小,评估点是简洁的编码,作为非对等式的代数分支程序!特别是,这给在战争低等级上可以有效评估的新的分级提供了大的新分。