Automatically discovering failures in vision models under real-world settings remains an open challenge. This work demonstrates how off-the-shelf, large-scale, image-to-text and text-to-image models, trained on vast amounts of data, can be leveraged to automatically find such failures. In essence, a conditional text-to-image generative model is used to generate large amounts of synthetic, yet realistic, inputs given a ground-truth label. Misclassified inputs are clustered and a captioning model is used to describe each cluster. Each cluster's description is used in turn to generate more inputs and assess whether specific clusters induce more failures than expected. We use this pipeline to demonstrate that we can effectively interrogate classifiers trained on ImageNet to find specific failure cases and discover spurious correlations. We also show that we can scale the approach to generate adversarial datasets targeting specific classifier architectures. This work serves as a proof-of-concept demonstrating the utility of large-scale generative models to automatically discover bugs in vision models in an open-ended manner. We also describe a number of limitations and pitfalls related to this approach.
翻译:在现实世界环境中,视觉模型的自动发现失败仍然是一个公开的挑战。 这项工作表明如何利用在大量数据上受过培训的现成、 大型、 图像到文字和文字到图像模型来自动发现失败。 本质上, 有条件的文本到模拟模型用来产生大量合成的、 但现实的、 带有地面真实标签的投入。 分类错误的投入被分组, 并使用说明模型来描述每个组。 每个组的描述被用来产生更多的投入, 并评估特定组群是否产生比预期的更多的失败。 我们利用这个管道来证明我们能够有效地审问在图像网络上受过训练的分类员, 以发现具体的失败案例, 并发现虚假的关联。 我们还表明我们可以扩大方法, 生成针对特定分类结构的对抗数据集。 这项工作可以作为概念的证明, 证明大规模基因描述模型的效用, 以便以开放的方式自动发现视觉模型中的错误。 我们还描述了与这一方法有关的一些限制和陷阱。