Recent blind super-resolution (SR) methods typically consist of two branches, one for degradation prediction and the other for conditional restoration. However, our experiments show that a one-branch network can achieve comparable performance to the two-branch scheme. Then we wonder: how can one-branch networks automatically learn to distinguish degradations? To find the answer, we propose a new diagnostic tool -- Filter Attribution method based on Integral Gradient (FAIG). Unlike previous integral gradient methods, our FAIG aims at finding the most discriminative filters instead of input pixels/features for degradation removal in blind SR networks. With the discovered filters, we further develop a simple yet effective method to predict the degradation of an input image. Based on FAIG, we show that, in one-branch blind SR networks, 1) we are able to find a very small number of (1%) discriminative filters for each specific degradation; 2) The weights, locations and connections of the discovered filters are all important to determine the specific network function. 3) The task of degradation prediction can be implicitly realized by these discriminative filters without explicit supervised learning. Our findings can not only help us better understand network behaviors inside one-branch blind SR networks, but also provide guidance on designing more efficient architectures and diagnosing networks for blind SR.


翻译:最近失明超级分辨率(SR)方法通常由两个分支组成,一个是退化预测,另一个是有条件恢复。然而,我们的实验表明,一部门网络可以实现与两部门计划相似的性能。然后,我们想知道:一部门网络如何自动学会辨别退化?为了找到答案,我们建议了一个新的诊断工具 -- -- 以综合梯度为基础的过滤器(FAIG)方法。与以往的综合梯度方法不同,我们FAIG的目的是寻找最有歧视性的过滤器,而不是输入像素/特性,以便在盲线SR网络中清除退化。通过发现过滤器,我们进一步开发了一个简单而有效的方法,以预测输入图像的退化。基于FAIG,我们显示,在一部门盲线SR网络中,我们能够找到一个非常小的(1%)基于综合梯度(FAIG)的歧视性过滤器(FAIG) 。与以往的综合梯度方法不同,我们所发现过滤器的重量、位置和连接对于确定具体的网络功能都很重要。 3)通过这些有区别的过滤器,我们可以隐含地实现退化预测任务,而无需明确监督地学习。我们在盲线网络内部的盲线上,我们的调查结果不能更好地理解盲线结构。

0
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
5+阅读 · 2019年6月5日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员