We present an $m$-adic Newton iteration with quadratic convergence for lexicographic Gr\"obner basis of zero dimensional ideals in two variables. We rely on a structural result about the syzygies in such a basis due to Conca and Valla, that allowed them to explicitly describe these Gr\"obner bases by affine parameters; our Newton iteration works directly with these parameters.
翻译:在两个变量中,我们展示了价值为百万元的牛顿迭代和“零维理想”的二次趋同。我们依靠Conca和Valla在这种基础上对交错的结构性结果,这使得它们能够以affine参数明确描述这些Gr\'obner基数;我们的牛顿迭代直接与这些参数合作。