The potential of digital twin technology is immense, specifically in the infrastructure, aerospace, and automotive sector. However, practical implementation of this technology is not at an expected speed, specifically because of lack of application-specific details. In this paper, we propose a novel digital twin framework for stochastic nonlinear multi-degree of freedom (MDOF) dynamical systems. The approach proposed in this paper strategically decouples the problem into two time-scales -- (a) a fast time-scale governing the system dynamics and (b) a slow time-scale governing the degradation in the system. The proposed digital twin has four components - (a) a physics-based nominal model (low-fidelity), (b) a Bayesian filtering algorithm a (c) a supervised machine learning algorithm and (d) a high-fidelity model for predicting future responses. The physics-based nominal model combined with Bayesian filtering is used combined parameter state estimation and the supervised machine learning algorithm is used for learning the temporal evolution of the parameters. While the proposed framework can be used with any choice of Bayesian filtering and machine learning algorithm, we propose to use unscented Kalman filter and Gaussian process. Performance of the proposed approach is illustrated using two examples. Results obtained indicate the applicability and excellent performance of the proposed digital twin framework.
翻译:数字双胞胎技术的潜力是巨大的,特别是在基础设施、航空航天和汽车部门。然而,这一技术的实际应用速度并不是预期的,这主要是因为缺乏具体应用的细节。在本文件中,我们提出了一个新的数字双向框架,用于Stochactic非线性多度自由(MDOF)动态系统。本文件建议的方法在战略上将这一问题分为两个时间尺度 -- -- (a) 快速的时间尺度,用以管理系统动态,(b) 缓慢的时间尺度,用以控制系统的退化。拟议的数字双胞胎技术有四个组成部分:(a) 基于物理的标称模型(低性),(b) 巴伊西亚过滤算法(c) 受监督的机器学习算法和(d) 用于预测未来反应的高纤维模型。基于物理的名义模型与巴伊西亚过滤法相结合的参数估计和受监督的机器学习算法被用于学习参数的时间演变。拟议框架可以用于选择贝伊西亚过滤法和机器升级法(低性)的四个组成部分。我们提议使用高比亚筛选和机学习的双级算法。我们提议使用高等级的模型,以展示了拟议业绩。