We investigate the problem of computing the shortest secure path in a Voronoi diagram. Here, a path is secure if it is a sequence of touching Voronoi cells, where each Voronoi cell in the path has a uniform cost of being secured. Importantly, we allow inserting new sites, which in some cases leads to significantly shorter paths. We present an $O(n \log n)$ time algorithm for solving this problem in the plane, which uses a dynamic additive weighted Voronoi diagram to compute this path. The algorithm is an interesting combination of the continuous and discrete Dijkstra algorithms. We also implemented the algorithm using CGAL.
翻译:我们用Voronoi图表来调查计算最短安全路径的问题。 这里, 一条路径是安全的, 如果它是一个触摸Voronoi细胞的序列, 路径中每个Voronoi细胞都有统一的成本。 重要的是, 我们允许插入新站点, 在某些情况下, 它会导致大大缩短路径 。 我们在平面上提出一个 $O( n\log n) 的时间算法来解决这个问题, 平面上使用一个动态添加加权Voronoi 图表来计算这个路径 。 该算法是连续和离散Dijkstra 算法的有趣组合。 我们还使用 CGAL 实施了算法 。