This paper aims to develop new mathematical and computational tools for modeling the distribution of portfolio returns across portfolios. We establish relevant mathematical formulas and propose efficient algorithms, drawing upon powerful techniques in computational geometry and the literature on splines, to compute the probability density function, the cumulative distribution function, and the k-th moment of the probability function. Our algorithmic tools and implementations efficiently handle portfolios with 10000 assets, and compute moments of order k up to 40 in a few seconds, thus handling real-life scenarios. We focus on the long-only strategy which is the most common type of investment, i.e. on portfolios whose weights are non-negative and sum up to 1; our approach is readily generalizable. Thus, we leverage a geometric representation of the stock market, where the investment set defines a simplex polytope. The cumulative distribution function corresponds to a portfolio score capturing the percentage of portfolios yielding a return not exceeding a given value. We introduce closed-form analytic formulas for the first 4 moments of the cross-sectional returns distribution, as well as a novel algorithm to compute all higher moments. We show that the first 4 moments are a direct mapping of the asset returns' moments. All of our algorithms and solutions are fully general and include the special case of equal asset returns, which was sometimes excluded in previous works. Finally, we apply our portfolio score in the design of new performance measures and asset management. We found our score-based optimal portfolios less concentrated than the mean-variance portfolio and much less risky in terms of ranking.
翻译:本文旨在开发新的数学和计算工具, 用于建模投资组合各组合回报的分布。 我们建立相关的数学公式, 并提出高效的算法, 利用计算几何学和 Spline 上文献的强力技术, 计算概率密度函数、 累积分布函数 和概率函数 kth 的 k- 瞬时 。 我们的算法工具和实施高效处理10000 资产组合, 并在几秒钟内计算顺序时间k 最多40, 从而处理真实生活情景 。 我们关注的是长期的策略, 这是最常见的投资类型, 即, 其重量不是负负的组合, 和累积到1 ; 我们的方法很容易通用。 因此, 我们利用股票市场的几何代表度代表股票市场的几何。 我们的累积分配功能相当于一个组合的分数, 以不超过给定价值的组合的百分比。 我们为交叉收益分布的前四个时刻引入了封闭式的分析公式, 以及一个创新的算法, 在所有更高时段里, 我们的分数中, 我们的分数分析过程包括一个特殊的分数 。 我们的分数分析过程, 我们的分数总的分数的分数返回, 我们的分数的分数, 我们的分数的分数, 我们的分数的分数的分数的分数的分数在最后的分数的分数中, 我们的分数的分数的次的分数, 我们的次的次的次的次的分数是分数, 我们的次的分数, 我们的次的分数, 我们的分数, 我们的分数的分数的分数, 我们的分数, 我们的分数, 我们的次的分数的分数的分数, 我们的分数的次的次的次的分数, 我们的分数, 我们的次的分数的次的次的次的次的分数, 我们的次的次的分数, 我们的分数, 我们的分数的分数的分数的分数的分数, 我们的分数的分数, 我们的分数的分数, 我们的分数的分数的次的分数, 我们的次的次的次的次的次的分数, 我们的分数, 我们的分数, 我们的次的次的分数