We study Markov chain Monte Carlo (MCMC) algorithms for target distributions defined on matrix spaces. Such an important sampling problem has yet to be analytically explored. We carry out a major step in covering this gap by developing the proper theoretical framework that allows for the identification of ergodicity properties of typical MCMC algorithms, relevant in such a context. Beyond the standard Random-Walk Metropolis (RWM) and preconditioned Crank--Nicolson (pCN), a contribution of this paper in the development of a novel algorithm, termed the `Mixed' pCN (MpCN). RWM and pCN are shown not to be geometrically ergodic for an important class of matrix distributions with heavy tails. In contrast, MpCN has very good empirical performance within this class. Geometric ergodicity for MpCN is not fully proven in this work, as some remaining drift conditions are quite challenging to obtain owing to the complexity of the state space. We do, however, make a lot of progress towards a proof, and show in detail the last steps left for future work. We illustrate the computational performance of the various algorithms through simulation studies, first for the trivial case of an Inverse-Wishart target, and then for a challenging model arising in financial statistics.
翻译:我们研究了Markov 链 Monte Carlo(MCMC ) 在矩阵空间界定的目标分布的算法。这样一个重要的取样问题尚未经过分析探讨。我们在弥补这一差距方面迈出了一大步,我们开发了适当的理论框架,以便识别在这种背景下相关的典型的MC MMC算法的惯性性特性。除了标准的随机-沃尔克大都会(RWM)和先决条件的Crank-Nicolson(PCN)之外,本文对于开发一种新型算法(称为“混合” pCN (MpCN) ) 作出了贡献。RWM 和 PCN 在填补这一空白方面并没有显示出具有几何分性,而对于一个重要的、尾部的矩阵分布类别来说,我们没有显示出地理学上的。相比之下,MPCN在这一类中具有非常良好的实验性业绩。在这项工作中,由于国家空间的复杂性,一些尚存的漂浮条件很难获得。然而,我们确实在寻找证据方面取得了许多进展,并且详细展示了未来工作最有挑战性的数据模型中留下的、在模拟中,我们通过随后的微数级的模型来计算了各种数据的成绩。