Closure spaces are a generalisation of topological spaces obtained by removing the idempotence requirement on the closure operator. We adapt the standard notion of bisimilarity for topological models, namely Topo-bisimilarity, to closure models -- we call the resulting equivalence CM-bisimilarity -- and refine it for quasi-discrete closure models. We also define two additional notions of bisimilarity that are based on paths on space, namely Path-bisimilarity and Compatible Path-bisimilarity, CoPa-bisimilarity for short. The former expresses (unconditional) reachability, the latter refines it in a way that is reminishent of Stuttering Equivalence on transition systems. For each bisimilarity we provide a logical characterisation, using variants of the Spatial Logic for Closure Spaces (SLCS). We also address the issue of (space) minimisation via the three equivalences.
翻译:封闭空间是通过取消关闭操作员的“一罪不二审”要求而获得的地形空间的概括性。我们将表层模型(即Topo-两异性)的两异性标准概念适用于封闭模型 -- -- 我们称之为由此产生的等同CM-两异性 -- -- 并把它改进为准分异封闭模型。我们还根据空间路径界定了另外两个两异性概念,即“路径-两异性”和“兼容路径-两异性”、“孔径-两异性-短等”。前一种表达(无条件)可达到性,后一种在过渡系统上使其精细化为“平衡等同性”。我们用封闭空间空间空间逻辑变量提供逻辑特征。我们还通过三种等同方法解决(空间)最小化问题。