Generally speaking, the main objective when training a neural speech synthesis system is to synthesize natural and expressive speech from the output layer of the neural network without much attention given to the hidden layers. However, by learning useful latent representation, the system can be used for many more practical scenarios. In this paper, we investigate the use of quantized vectors to model the latent linguistic embedding and compare it with the continuous counterpart. By enforcing different policies over the latent spaces in the training, we are able to obtain a latent linguistic embedding that takes on different properties while having a similar performance in terms of quality and speaker similarity. Our experiments show that the voice cloning system built with vector quantization has only a small degradation in terms of perceptive evaluations, but has a discrete latent space that is useful for reducing the representation bit-rate, which is desirable for data transferring, or limiting the information leaking, which is important for speaker anonymization and other tasks of that nature.


翻译:一般来说,在培训神经语言合成系统时,主要目标是将神经网络产出层的自然和表达式言词合成,而不重视隐性层。然而,通过学习有用的潜在代表,该系统可以用于许多更实际的情景。在本文件中,我们调查利用量化矢量来模拟潜在语言嵌入并与连续对应方进行比较。通过对培训中的潜在空间执行不同的政策,我们能够获得一种隐含语言嵌入,这种嵌入在不同的特性上,同时在质量和语言相似性方面具有类似的性能。我们的实验表明,用矢量量量化构建的语音克隆系统在认知性评价方面只有很小的退化,但有一个离散的潜在空间,有助于减少代表比特率,这对于数据传输或限制信息泄漏是可取的,而数据传输或限制信息泄漏对于语音匿名和该性质的其他任务非常重要。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Teacher-Student Training for Robust Tacotron-based TTS
Arxiv
3+阅读 · 2018年11月13日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
【资源】语音增强资源集锦
专知
8+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员