Current differentiable renderers provide light transport gradients with respect to arbitrary scene parameters. However, the mere existence of these gradients does not guarantee useful update steps in an optimization. Instead, inverse rendering might not converge due to inherent plateaus, i.e., regions of zero gradient, in the objective function. We propose to alleviate this by convolving the high-dimensional rendering function that maps scene parameters to images with an additional kernel that blurs the parameter space. We describe two Monte Carlo estimators to compute plateau-free gradients efficiently, i.e., with low variance, and show that these translate into net-gains in optimization error and runtime performance. Our approach is a straightforward extension to both black-box and differentiable renderers and enables optimization of problems with intricate light transport, such as caustics or global illumination, that existing differentiable renderers do not converge on.
翻译:目前不同的转换器在任意的场景参数方面提供轻型运输梯度。 但是,这些梯度的存在本身并不能保证优化的有用更新步骤。 相反,由于内在高原,即目标函数中的零梯度区域,反向转换可能不会趋同。 我们提议通过将高维的设定功能结合起来来缓解这一点,该功能将场景参数映射成图像,并增加一个模糊参数空间的内核。 我们描述了两个蒙特卡洛测算器,以高效地计算无高原梯度,即低差异,并表明这些梯度转化为优化错误和运行时性能的净收益。 我们的方法是对黑箱和可变化的转换器进行直接的扩展,并能够优化复杂的光传输问题,例如导流或全球的辐射,因为现有的可变转换器并不集中在一起。