This paper aims to develop numerical approximations of the Keller--Segel equations that mimic at the discrete level the lower bounds and the energy law of the continuous problem. We solve these equations for two unknowns: the organism (or cell) density, which is a positive variable, and the chemoattractant density, which is a nonnegative variable. We propose two algorithms, which combine a stabilized finite element method and a semi-implicit time integration. The stabilization consists of a nonlinear artificial diffusion that employs a graph-Laplacian operator and a shock detector that localizes local extrema. As a result, both algorithms turn out to be nonlinear.Both algorithms can generate cell and chemoattractant numerical densities fulfilling lower bounds. However, the first algorithm requires a suitable constraint between the space and time discrete parameters, whereas the second one does not. We design the latter to attain a discrete energy law on acute meshes. We report some numerical experiments to validate the theoretical results on blowup and non-blowup phenomena. In the blowup setting, we identify a \textit{locking} phenomenon that relates the $L^\infty(\Omega)$-norm to the $L^1(\Omega)$-norm limiting the growth of the singularity when supported on a macroelement.
翻译:本文旨在开发 Keller- Segel 方程式的数值近似值, 它在离散级别上模仿低边框和连续问题的能量定律。 我们为两个未知方程式解决这些方程式: 生物( 或细胞) 密度, 是一个正变量, 和色色吸引密度, 是一个非负变量。 我们提出两种算法, 将稳定的有限元素法和半隐含的时间集成结合起来。 稳定化由非线性人工扩散组成, 使用图形- Laplacian 操作器和冲击探测器, 将本地极限化。 结果, 两种算法都变成非线性 。 但是, 第一个算法需要空间和时间离散参数之间的适当限制, 而第二个算不到。 我们设计后一种算法, 以在急性 meshes 上实现离散能源定法。 我们报告一些数字实验, 以验证吹风和非降现象的理论结果 。 在吹泡1 美元\\\ 美元 的宏 的内程设置时, 我们确定一个最小值L 。