Neural Normalized MinSum (N-NMS) decoding delivers better frame error rate (FER) performance on linear block codes than conventional normalized MinSum (NMS) by assigning dynamic multiplicative weights to each check-to-variable message in each iteration. Previous N-NMS efforts have primarily investigated short-length block codes (N < 1000), because the number of N-NMS parameters to be trained is proportional to the number of edges in the parity check matrix and the number of iterations, which imposes am impractical memory requirement when Pytorch or Tensorflow is used for training. This paper provides efficient approaches to training parameters of N-NMS that support N-NMS for longer block lengths. Specifically, this paper introduces a family of neural 2-dimensional normalized (N-2D-NMS) decoders with with various reduced parameter sets and shows how performance varies with the parameter set selected. The N-2D-NMS decoders share weights with respect to check node and/or variable node degree. Simulation results justify this approach, showing that the trained weights of N-NMS have a strong correlation to the check node degree, variable node degree, and iteration number. Further simulation results on the (3096,1032) protograph-based raptor-like (PBRL) code show that N-2D-NMS decoder can achieve the same FER as N-NMS with significantly fewer parameters required. The N-2D-NMS decoder for a (16200,7200) DVBS-2 standard LDPC code shows a lower error floor than belief propagation. Finally, a hybrid decoding structure combining a feedforward structure with a recurrent structure is proposed in this paper. The hybrid structure shows similar decoding performance to full feedforward structure, but requires significantly fewer parameters.


翻译:NN-NMS( N- NMS) 解码显示线性块代码的框架误差率( FER) 比常规的归正 MinSum( NMS) 的比常规的归正的 MinSum( NMS), 给每迭代中的每个检查到可变信息分配动态倍增权重。 前 N- NMS( N- NMMS) 的努力主要调查了短长区块代码( N < 1000), 因为N- NMS( N- NMS) 的参数数与平级检查矩阵中的边缘数成比例成正比值值( N- P- NMS) 或 Tensorform( Tensorporm) 时, 要求使用不切实际的内存值值值值值值值值值值值值值值值值值值值值值值值。 本文为N- NMSS 培训N- 2D( NMS) 培训N- 2OD( NRMS) 的比硬值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值比值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值,, 的比值比值比值比值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值,, 的比值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值比值比值比值比值比值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
最新《自动微分》综述教程,71页ppt
专知会员服务
21+阅读 · 2020年11月22日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
已删除
将门创投
3+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
20+阅读 · 2021年2月28日
Arxiv
4+阅读 · 2019年2月8日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
注意力机制综述
专知会员服务
203+阅读 · 2021年1月26日
最新《自动微分》综述教程,71页ppt
专知会员服务
21+阅读 · 2020年11月22日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
3+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
一文带你读懂 SegNet(语义分割)
AI研习社
19+阅读 · 2019年3月9日
LibRec 精选:基于参数共享的CNN-RNN混合模型
LibRec智能推荐
6+阅读 · 2019年3月7日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Top
微信扫码咨询专知VIP会员