In recent years, the use of Generative Adversarial Networks (GANs) has become very popular in generative image modeling. While style-based GAN architectures yield state-of-the-art results in high-fidelity image synthesis, computationally, they are highly complex. In our work, we focus on the performance optimization of style-based generative models. We analyze the most computationally hard parts of StyleGAN2, and propose changes in the generator network to make it possible to deploy style-based generative networks in the edge devices. We introduce MobileStyleGAN architecture, which has x3.5 fewer parameters and is x9.5 less computationally complex than StyleGAN2, while providing comparable quality.
翻译:近年来,基因反转网络(GANs)的使用在基因图像建模中已变得非常流行,尽管基于样式的GAN结构在高虚度图像合成中产生最新的结果,但从计算上看,这些结构非常复杂。在我们的工作中,我们侧重于基于样式的基因模型的性能优化。我们分析了StyleGAN2中最难计算的部分,并提议对发电机网络进行修改,以便能够在边缘设备中部署基于样式的基因网络。我们引入了移动StyleGAN结构,该结构的参数比StyleGAN2少x3.5个,在计算上比StyleGAN2要复杂9.5个,同时提供类似的质量。