In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. Under some mild assumptions, we show that our method enjoys a total inner iteration complexity of $\widetilde{\cal O}(\epsilon^{-11/2})$ and an operation complexity of $\widetilde{\cal O}(\epsilon^{-11/2}\min\{n,\epsilon^{-5/4}\})$ for finding an $(\epsilon,\sqrt{\epsilon})$-SOSP of general nonconvex conic optimization with high probability. Moreover, under a constraint qualification, these complexity bounds are improved to $\widetilde{\cal O}(\epsilon^{-7/2})$ and $\widetilde{\cal O}(\epsilon^{-7/2}\min\{n,\epsilon^{-3/4}\})$, respectively. To the best of our knowledge, this is the first study on the complexity of finding an approximate SOSP of general nonconvex conic optimization. Preliminary numerical results are presented to demonstrate superiority of the proposed method over first-order methods in terms of solution quality.
翻译:在本文中,我们考虑找到一个大致为二阶固定点(SOSP)的普通非直线性平衡优化,在非线性平等限制和convex二次曲线约束下,将两个不同的功能最小化。特别是,我们建议采用基于牛顿-conjugate 梯度(Newton-CG)的基于屏障的拉格兰加拉格亚(Newton-CG) 方法来寻找这一问题的近似SOSP。在一些温和假设下,我们发现我们的方法具有一个总的内部循环复杂性,即全局性O}(\\epsilon ⁇ -11/2}美元)和超线性功能的功能复杂性($+2⁄2⁄4美元) 。我们目前提出的一般非Convex consilation 调和高概率的Oslobility-lus(Osilon) 最佳方法,是我们关于O-rupal-ral-cal-al-al-al-al-al-al-al-al-al-al-al-al-leg-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-al-leisle)的第一次研究。