We study the communication complexity of dominant strategy implementations of combinatorial auctions. We start with two domains that are generally considered "easy": multi-unit auctions with decreasing marginal values and combinatorial auctions with gross substitutes valuations. For both domains we have fast algorithms that find the welfare-maximizing allocation with communication complexity that is poly-logarithmic in the input size. This immediately implies that welfare maximization can be achieved in ex-post equilibrium with no significant communication cost, by using VCG payments. In contrast, we show that in both domains the communication complexity of any dominant strategy implementation that achieves the optimal welfare is polynomial in the input size. We then move on to studying the approximation ratios achievable by dominant strategy mechanisms. For multi-unit auctions with decreasing marginal values, we provide a dominant-strategy communication FPTAS. For combinatorial auctions with general valuations, we show that there is no dominant strategy mechanism that achieves an approximation ratio better than $m^{1-\epsilon}$ that uses $poly(m,n)$ bits of communication, where $m$ is the number of items and $n$ is the number of bidders. In contrast, a \emph{randomized} dominant strategy mechanism that achieves an $O(\sqrt m)$ approximation with $poly(m,n)$ communication is known. This proves the first gap between computationally efficient deterministic dominant strategy mechanisms and randomized ones. En route, we answer an open question on the communication cost of implementing dominant strategy mechanisms for more than two players, and also solve some open problems in the area of simultaneous combinatorial auctions.
翻译:我们研究的是实施组合拍卖的主要战略的通信复杂性。 我们从两个通常被视为“ 容易” 的领域开始: 多单位拍卖,其边际价值减少,以及组合拍卖,其总替代品估值。 对于这两个领域,我们都有快速算法,发现福利最大化分配,其通信复杂性在投入规模中是多式对数。这立即意味着,通过使用 VCG 付款,在事后平衡中可以实现福利最大化,而没有巨大的通信成本。相反,我们显示,在这两个领域,任何实现最佳福利的主要战略执行的通信复杂性在投入规模中是多式的。我们接着开始研究主要战略机制可以实现的近似比率。对于边际价值减少的多单位拍卖,我们提供了一种支配性最均衡的通信工具FPTAAS。对于带总估值的组合拍卖,我们表明,没有一个比美元更接近的通信成本比例更好的主导战略机制。 使用美元( Ormalalal ) 和美元(Ormal ) 的汇率战略中, 美元(美元) 和美元的市际交易战略中, 数字(美元) 和美元的市际交易机制中, 的汇率是 的汇率数字。