In this article, we present a new Nested Cross Approximation (NCA) for $\mathcal{H}^{2}$ matrices. It differs from the existing NCAs in the technique of choosing pivots, a key part of the approximation. Our technique of choosing pivots is purely algebraic and involves only a single tree traversal. We demonstrate its applicability by developing a fast $\mathcal{H}^{2}$ matrix-vector product, that uses the new NCA for the appropriate low-rank approximations. We perform various numerical experiments to illustrate the timing profiles and the accuracy of our method. We also provide a comparison of the proposed NCA with the existing NCAs. A key observation is that the proposed NCA performs better than the existing NCAs. In the spirit of reproducible computational science, the implementation of the algorithm developed in this article is made available at https://github.com/vaishna77/nNCA2D.
翻译:在此篇文章中, 我们为 $\ mathcal{ H ⁇ 2} $ 提供了一个新的 Nested Cross Acceration (NCA), 用于 $\ mathcal{ H ⁇ 2} $ 的 新的 NCA 矩阵。 它与现有的 NCA 在选择轴心技术( 近似的关键部分) 方面与现有的 NCA 技术不同。 我们选择支心线的技术是纯代数的, 仅涉及一个单一的树木穿行。 我们开发了一个快速的 $\ mathcal{ H ⁇ 2} 的 矩阵- 矢量产品, 用新的 NCA 用于适当的低级近似值。 我们进行了各种数字实验, 以说明我们的方法的时间分布和准确性。 我们还比较了拟议的 NCA 。 一个关键观察是, 拟议的 NCA 其表现优于现有的 NCA 。 本着可复制的计算科学的精神, 实施此篇文章中开发的算法可在 https:// githhutudub.com/vaishna 77/ nNCA2D.