Training robots to navigate diverse environments is a challenging problem as it involves the confluence of several different perception tasks such as mapping and localization, followed by optimal path-planning and control. Recently released photo-realistic simulators such as Habitat allow for the training of networks that output control actions directly from perception: agents use Deep Reinforcement Learning (DRL) to regress directly from the camera image to a control output in an end-to-end fashion. This is data-inefficient and can take several days to train on a GPU. Our paper tries to overcome this problem by separating the training of the perception and control neural nets and increasing the path complexity gradually using a curriculum approach. Specifically, a pre-trained twin Variational AutoEncoder (VAE) is used to compress RGBD (RGB & depth) sensing from an environment into a latent embedding, which is then used to train a DRL-based control policy. A*, a traditional path-planner is used as a guide for the policy and the distance between start and target locations is incrementally increased along the A* route, as training progresses. We demonstrate the efficacy of the proposed approach, both in terms of increased performance and decreased training times for the PointNav task in the Habitat simulation environment. This strategy of improving the training of direct-perception based DRL navigation policies is expected to hasten the deployment of robots of particular interest to industry such as co-bots on the factory floor and last-mile delivery robots.


翻译:培训机器人以引导不同环境是一个具有挑战性的问题,因为它涉及若干不同的认知任务,例如绘图和本地化,然后是最佳的路径规划和控制。最近发布的摄影现实模拟器,如人居中心,可以对直接从感知中输出控制行动的网络进行培训:代理人使用深强化学习(DRL)直接从摄像图像回归到以端到端的方式控制输出。这是数据效率低下的,在GPU上培训可能需要几天时间。我们的文件试图通过将感知和控制神经网培训与控制神经网相结合来克服这一问题,并逐步使用课程方法提高路径复杂性。具体地说,一个经过事先训练的双级双级自动 Encorder(VAE)用来将RGBD(RGB & 深度)从环境感知到潜在嵌入层,然后用来训练基于DRUP的控制政策。A*,一个传统的路径规划器被用作政策和目标地点之间距离的指南,随着A* 沿A* 路线逐步增加路径的路径。具体地,一个经过训练的双级自动智能的自动智能自动转换(VDRB) 的交付策略,我们展示了在最终的进度上提升的进度,从而显示了对RGBDRBL的预期环境的预期的定位的进度,从而提高了的进度,从而提高了的飞行的飞行的进度。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员