We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we outperform state-of-the-art classifiers based on geometric deep learning as well as statistical shape modeling especially in presence of sparse training data. We evaluate the performance of our model w.r.t. shape-based classification of pathological malformations of the human knee and show that it outperforms the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability.
翻译:我们为非线性统计形状建模提出了一种新颖的方法,这种模型在Euclidean运动下是无差异的,因此没有一致性。我们通过在一致的里曼尼安环境中分析作为利伊组元素的形状的图象扭曲和弯曲,构建了一个可靠地处理大变形的框架。由于利伊组操作的清晰特征,我们的非欧几里德方法非常高效,可以快速地进行稳健的处理。这有利于里曼尼分析通过纵向和多地点成像研究获得的大型成形人口,从而提供更大的统计力量。此外,由于平面配置构成形状空间的亚many值,我们的代表性使得能够有效估计准几度表形表面平坦的形状。我们评估了我们模型的形状性能。我们用测深的深度学习和多处成像法的状态分类方法,以及统计模型的形状模型,特别是以近距离性训练能力的精确度能力分析方式,我们用模型来展示了人类的变异性模型。我们将模型的变形模型,我们用来展示了人类的模型的模型,以测深层次研究为基础的生物分级分类方法,以及以统计为基础的统计模型,特别是以近深度数据模型的变形分析,我们用来显示的模型的模型的变形的变形变形的模型,我们用来显示了它的变形变形变的模型的变形样的模型的模型。