Task and motion planning (TAMP) algorithms have been developed to help robots plan behaviors in discrete and continuous spaces. Robots face complex real-world scenarios, where it is hardly possible to model all objects or their physical properties for robot planning (e.g., in kitchens or shopping centers). In this paper, we define a new object-centric TAMP problem, where the TAMP robot does not know object properties (e.g., size and weight of blocks). We then introduce Task-Motion Object-Centric planning ({\bf TMOC}), a grounded TAMP algorithm that learns to ground objects and their physical properties with a physics engine. TMOC is particularly useful for those tasks that involve dynamic complex robot-multi-object interactions that can hardly be modeled beforehand. We have demonstrated and evaluated TMOC in simulation and using a real robot. Results show that TMOC outperforms competitive baselines from the literature in cumulative utility.
翻译:任务和动作规划(TAMP)算法已经开发出来,以帮助机器人规划离散和连续空间的行为。机器人面临复杂的现实世界情景,很难为所有物体或其物理特性模拟机器人规划(例如厨房或购物中心)。在本文中,我们定义了一个新的以物体为中心的TAMP问题,即TAMP机器人不知道物体属性(例如块的大小和重量),然后我们引入了任务-运动对象-内容规划(hbf TMOC}),即一个以物理引擎学习将物体及其物理特性定位的有根TAMP算法。TMOC对于涉及难以事先建模的动态复杂的机器人-多物体相互作用的任务特别有用。我们在模拟和使用真正的机器人中演示和评价了TMOC。结果显示,TMOC在累积效用方面超越了文献中的竞争性基线。