We consider the problem of characterizing an inner bound to the capacity region of a $3-$user classical-quantum interference channel ($3-$CQIC). The best known coding scheme for communicating over CQICs is based on unstructured random codes and employs the techniques of message splitting and superposition coding. For classical $3-$user interference channels (ICs), it has been proven that coding techniques based on coset codes - codes possessing algebraic closure properties - strictly outperform all coding techniques based on unstructured codes. In this work, we develop analogous techniques based on coset codes for $3$to$1-$CQICs - a subclass of $3-$user CQICs. We analyze its performance and derive a new inner bound to the capacity region of $3$to$1-$CQICs that subsume the current known largest and strictly enlarges the same for identified examples.
翻译:我们认为将一个3美元用户古典-分子干扰通道(3-美元CQIC)与能力区内部连接的问题。在CQIC上进行通信的最已知编码方案是以无结构随机代码为基础,并采用信息分割和叠加编码技术。对于传统的3美元用户干扰频道(ICs),已经证明,基于共设代码的编码技术――拥有代数封闭特性的编码――严格地超越所有基于非结构化代码的编码技术。在这项工作中,我们开发了基于3美元到1美元CQIC的共设代码的类似技术――一个3美元用户CQIC的子类。我们分析了其性能,并开发出一个新的内圈,以3美元到1美元的能力区为基础,其中含有目前已知的最大和严格扩展了已知实例的功能区。