We propose a new quantum state reconstruction method that combines ideas from compressed sensing, non-convex optimization, and acceleration methods. The algorithm, called Momentum-Inspired Factored Gradient Descent (\texttt{MiFGD}), extends the applicability of quantum tomography for larger systems. Despite being a non-convex method, \texttt{MiFGD} converges \emph{provably} to the true density matrix at a linear rate, in the absence of experimental and statistical noise, and under common assumptions. With this manuscript, we present the method, prove its convergence property and provide Frobenius norm bound guarantees with respect to the true density matrix. From a practical point of view, we benchmark the algorithm performance with respect to other existing methods, in both synthetic and real experiments performed on an IBM's quantum processing unit. We find that the proposed algorithm performs orders of magnitude faster than state of the art approaches, with the same or better accuracy. In both synthetic and real experiments, we observed accurate and robust reconstruction, despite experimental and statistical noise in the tomographic data. Finally, we provide a ready-to-use code for state tomography of multi-qubit systems.


翻译:我们提出一种新的量子状态重建方法,将来自压缩感测、非碳化优化和加速法的理念结合起来。 算法叫做“ 动力- 动力- 动力- 因素- 因素- 梯度源(\ textt{ MIFGD} ), 扩大了量子摄影对较大系统的适用性。 尽管算法是一种非碳化法, \ textt{ MIFGD} 却在没有实验和统计噪音的情况下, 在没有试验和统计噪音的情况下, 在共同假设的情况下, 将 \ emph{ 可能 集合到真正的密度矩阵。 我们用这个手稿来展示方法, 证明它的趋同属性, 并为真正的密度矩阵提供Frobenius 规范约束性保证。 我们从实际角度看, 在IBM的量子处理器上进行的合成和真实实验, 我们用其他现有方法来衡量算法的性能。 我们发现, 在合成和真实的实验中, 我们观察到了精确和稳健的重建, 尽管在图象数据中的实验和统计噪音中, 我们提供了一种多位的状态。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】Python 编程,480页pdf
专知会员服务
239+阅读 · 2020年8月14日
【干货书】管理统计和数据科学原理,678页pdf
专知会员服务
185+阅读 · 2020年7月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
3+阅读 · 2017年10月27日
Arxiv
4+阅读 · 2020年3月27日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
已删除
将门创投
3+阅读 · 2017年10月27日
Top
微信扫码咨询专知VIP会员