The recent emergence of 6G raises the challenge of increasing the transmission data rate even further in order to break the barrier set by the Shannon limit. Traditional communication methods fall short of the 6G goals, paving the way for Semantic Communication (SemCom) systems. These systems find applications in wide range of fields such as economics, metaverse, autonomous transportation systems, healthcare, smart factories, etc. In SemCom systems, only the relevant information from the data, known as semantic data, is extracted to eliminate unwanted overheads in the raw data and then transmitted after encoding. In this paper, we first use the shared knowledge base to extract the keywords from the dataset. Then, we design an auto-encoder and auto-decoder that only transmit these keywords and, respectively, recover the data using the received keywords and the shared knowledge. We show analytically that the overall semantic distortion function has an upper bound, which is shown in the literature to converge. We numerically compute the accuracy of the reconstructed sentences at the receiver. Using simulations, we show that the proposed methods outperform a state-of-the-art method in terms of the average number of words per sentence.


翻译:最近出现的6G系统提出了进一步提高传输数据率的挑战,以打破香农限制设定的屏障。传统的通信方法没有达到6G目标,为语义通信系统铺平了道路。这些系统在经济学、元、自主运输系统、医疗保健、智能工厂等广泛领域找到了应用。在SemCom系统中,只有数据中的相关信息,即所谓的语义数据,才被提取以消除原始数据中不必要的间接间接数据,然后在编码后传播。在本文中,我们首先使用共享知识库从数据集中提取关键词。然后,我们设计一个自动编码器和自动解码器,仅传输这些关键词,并分别使用收到的关键词和共享知识来恢复数据。我们从分析中显示,总体语义扭曲功能具有上层界限,如文献所示,我们从数字上对接收器中重订的句子的准确性进行了折叠。我们用模拟方法显示,拟议的方法在平均句号数中超越了状态。

0
下载
关闭预览

相关内容

系统设计是新系统的物理设计阶段。根据系统分析阶段所确定的新系统的逻辑模型、功能要求,在用户提供的环境条件下,设计出一个能在计算机网络环境上实施的方案,即建立新系统的物理模型。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月20日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员