In a recent work [B. Koc et al., arXiv:2010.03750, SIAM J. Numer. Anal., to appear], the authors showed that including difference quotients (DQs) is necessary in order to prove optimal pointwise in time error bounds for proper orthogonal decomposition (POD) reduced order models of the heat equation. In this work, we introduce a new approach to including DQs in the POD procedure. Instead of computing the POD modes using all of the snapshot data and DQs, we only use the first snapshot along with all of the DQs and special POD weights. We show that this approach retains all of the numerical analysis benefits of the standard POD DQ approach, while using a POD data set that has half the number of snapshots as the standard POD DQ approach, i.e., the new approach is more computationally efficient. We illustrate our theoretical results with numerical experiments.
翻译:在最近的一项工作[B. Koc等人, arXiv:2010.03750, SIAM J. Numer. Anal.]中,作者们指出,为了在时间差中证明最佳点以证明适当的正心分解(POD)降序模型的最佳值值,有必要将差数数值(DQs)纳入到热方程式中。在这项工作中,我们引入了将DQs纳入 POD 程序的新办法。我们不使用所有快照数据和DQs来计算 POD 模式,而只使用所有DQs和特殊POD重量来计算第一张POD 模式。我们表明,这种方法保留了标准POD DQ 方法的所有数字分析效益,同时使用一个POD数据集,其一半的速数作为标准的 PODD DQ 方法,即新办法更具有计算效率。我们用数字实验来说明我们的理论结果。