Brain function relies on a precisely coordinated and dynamic balance between the functional integration and segregation of distinct neural systems. Characterizing the way in which neural systems reconfigure their interactions to give rise to distinct but hidden brain states remains an open challenge. In this paper, we propose a Bayesian model-based characterization of latent brain states and showcase a novel method based on posterior predictive discrepancy using the latent block model to detect transitions between latent brain states in blood oxygen level-dependent (BOLD) time series. The set of estimated parameters in the model includes a latent label vector that assigns network nodes to communities, and also block model parameters that reflect the weighted connectivity within and between communities. Besides extensive in-silico model evaluation, we also provide empirical validation (and replication) using the Human Connectome Project (HCP) dataset of 100 healthy adults. Our results obtained through an analysis of task-fMRI data during working memory performance show appropriate lags between external task demands and change-points between brain states, with distinctive community patterns distinguishing fixation, low-demand and high-demand task conditions.
翻译:大脑功能依赖于不同神经系统的功能整合和隔离之间的精确协调和动态平衡。 描述神经系统调整其相互作用以产生不同但隐藏的大脑状态的方式仍然是一项公开的挑战。 在本文中,我们提议对潜在大脑状态进行巴伊西亚模型定性,并展示一种基于事后预测差异的新方法,使用潜在区块模型来检测血液氧水平(BOLD)时间序列中潜在大脑状态之间的过渡。 模型中的一组估计参数包括向社区分配网络节点的潜在标签矢量,并屏蔽反映社区内部和社区之间加权连接的模型参数。 除了广泛的硅模型评估外,我们还利用人类连接项目100个健康成年人数据集提供经验性验证(和复制)。我们通过分析工作记忆性表现期间的任务-fMRI数据获得的结果显示,外部任务需求与大脑状态之间变化点之间存在适当的滞后,而不同的社区模式则区分了固定、低需求和高需求任务条件。