To certify safety and robustness of neural networks, researchers have successfully applied abstract interpretation, primarily using interval bound propagation (IBP). IBP is an incomplete calculus that over-approximates the set of possible predictions of a neural network. In this paper, we introduce the interval universal approximation (IUA) theorem, which sheds light on the power and limits of IBP. First, IUA shows that neural networks not only can approximate any continuous function $f$ (universal approximation) as we have known for decades, but we can find a neural network, using any well-behaved activation function, whose interval bounds are an arbitrary close approximation of the set semantics of $f$ (the result of applying $f$ to a set of inputs). We call this notion of approximation interval approximation. Our result (1) extends the recent result of Baader et al. (2020) from ReLUs to a rich class of activation functions that we call squashable functions, and (2) implies that we can construct certifiably robust neural networks under $\ell_\infty$-norm using almost any practical activation function. Our construction and that of Baader et al. (2020) are exponential in the size of the function's domain. The IUA theorem additionally establishes a limit on the capabilities of IBP. Specifically, we show that there is no efficient construction of a neural network that interval-approximates any $f$, unless P=NP. To do so, we present a novel reduction from 3SAT to interval-approximation of neural networks. It implies that it is hard to construct an IBP-certifiably robust network, even if we have a robust network to start with.


翻译:为了验证神经网络的安全和稳健性,研究人员成功地应用了抽象解释,主要是使用间隔约束传播(IMBP) 。 IBP是一个不完整的微积分,过于接近对神经网络的一系列可能的预测。 在本文中,我们引入了间隙通用近似(IUA) 理论, 揭示了IMBP的功率和限度。 首先, IUA 显示神经网络不仅可以近似任何连续功能$f美元(通用近似), 正如我们数十年来所知道的那样, 但我们可以找到一个神经网络, 使用任何妥善的激活功能, 其间距是任意近距离近距离接近对一套神经网络的预测 。 我们的结果 (1) 将最近Baader et al. (2020) 的结果从ReLUs扩大到一个丰富的激活功能, 如果我们在那里称之为可稳定功能, 它意味着我们可以在 $- 美元固定的神经网络下建立可靠的神经网络, 使用任何直径网络的直径网络, 直径显示我们的直径网络将显示一个直径网络。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月31日
Arxiv
0+阅读 · 2021年3月27日
VIP会员
相关资讯
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员