This paper summarizes our submission to Task 2 of the second track of the 10th Dialog System Technology Challenge (DSTC10) "Knowledge-grounded Task-oriented Dialogue Modeling on Spoken Conversations". Similar to the previous year's iteration, the task consists of three subtasks: detecting whether a turn is knowledge seeking, selecting the relevant knowledge document and finally generating a grounded response. This year, the focus lies on adapting the system to noisy ASR transcripts. We explore different approaches to make the models more robust to this type of input and to adapt the generated responses to the style of spoken conversations. For the latter, we get the best results with a noisy channel model that additionally reduces the number of short and generic responses. Our best system achieved the 1st rank in the automatic and the 3rd rank in the human evaluation of the challenge.
翻译:本文件总结了我们提交第10次对话系统技术挑战(DSTC10)第二轨道任务2的任务,即“以知识为背景的、以任务为导向的关于口述对话模式的对话”。 与上一年的迭代类似,任务包括三个子任务:发现一个转折是否在寻求知识,选择相关知识文件,最后作出有根据的反应。今年的重点是使该系统适应吵闹的ASR记录誊本。我们探索了不同办法,使模型更适合这种输入,并使生成的响应适应口述对话的风格。对于后者,我们用一个吵闹的频道模式获得最佳结果,从而进一步减少短期和一般性回应的数量。我们的最佳系统在对挑战的人类评价中实现了自动排行和排行第三位。