In this chapter, an integer linear programming formulation for the problem of obtaining task-relevant, multi-resolution, environment abstractions for resource-constrained autonomous agents is presented. The formulation leverages concepts from information-theoretic signal compression, specifically, the information bottleneck (IB) method, to pose an abstraction problem as an optimal encoder search over the space of multi-resolution trees. The abstractions emerge in a task-relevant manner as a function of agent information-processing constraints. We detail our formulation, and show how hierarchical tree structures, signal encoders, and information-theoretic methods for signal compression can be unified under a common theme. A discussion delineating the benefits and drawbacks of our formulation is presented, as well as a detailed explanation how our approach can be interpreted within the context of generating abstractions for resource-constrained autonomous systems. It is shown that the resulting information-theoretic abstraction problem over the space of multi-resolution trees can be formulated as a integer linear programming (ILP) problem. We demonstrate the approach on a number of examples, and provide a discussion detailing the differences of the proposed framework compared to existing methods. Lastly, we consider a linear program relaxation of the ILP problem, thereby demonstrating that multi-resolution information-theoretic tree abstractions can be obtained by solving a convex program.
翻译:在本章中,为获得与任务相关、多分辨率、资源受限制的自主剂的环境抽象问题,提出了整形线性编程方案;为获得与任务相关、多分辨率、资源受限制的自主剂提供了全线性编程配方;利用信息理论信号压缩的概念,特别是信息瓶颈(IB)方法,作为多分辨率树空间的最佳编码搜索方法,提出了抽象问题;根据代理信息处理限制,以任务相关的方式出现了抽象化问题;我们详细说明了我们的配方,并展示了如何在共同主题下统一树级结构、信号编码器和信息理论压缩信号的方法;讨论了阐述我们配方的优点和缺点,并详细解释了如何在为资源受限制的自主系统空间生成抽象数据的背景下解释我们的方法;显示,由此产生的多分辨率树空间的信息理论抽象化问题可以作为一种线性编程(ILP)问题,我们展示了有关若干例子的方法,并详细介绍了拟议框架的差别,并详细介绍了与现有线性程序相比,我们考虑通过一个升级方案来解释一个我所拟的框架。