项目名称: 支撑统计故障定位的测试技术研究

项目编号: No.61202077

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 计算机科学学科

项目作者: 姜博

作者单位: 北京航空航天大学

项目金额: 23万元

中文摘要: 软件调试中的故障定位是软件开发过程中一项困难而耗时的工作。统计故障定位虽然能够帮助开发人员提高调试效率,但定位的准确度仍然不够理想。而统计故障定位的有效性不仅仅依赖于故障定位算法,也依赖于软件测试所产生的测试用例集的执行信息。我们调研发现,已有的测试和调试的集成研究工作仅能针对测试用例集的某一个特性来加强对统计故障定位的支持,仍然缺乏全面和实用的支撑统计故障定位的测试完备性准则和相应的测试生成技术。因此,本项目拟通过数据挖掘技术找出有效支撑统计故障定位的测试用例集的关键特征集,并提出相应的有效支撑统计故障定位的测试完备性准则。在此基础上,通过对基于符号执行的测试生成算法的制导和优化,构建支撑测试完备性准则的测试生成技术及工具集。本项目将对测试技术和统计故障定位技术的有效集成提供理论指导,并能通过测试完备性准则和高效的测试生成算法切实提高统计故障定位的精确度、实用性和可扩展性。

中文关键词: 软件测试;故障定位;测试生成;测试完备性准则;测试用例排序

英文摘要: Software debugging involves fault localization, bug fixing and retesting the fixed program. Fault localization is one of the most tedious, difficult and time-consuming activity during the software development process. Although statistical fault localization techniques can help developers improve their debugging efficiency, the precision of current fault localization techniques is still unsatisfactory for large application. Software testing and debugging are two interconnected and interrelated activities, the execution information of the test suite generated by testing techniques is the basis for statistical fault localization. Our preliminary study found that existing work on the integration of testing and debugging can improve only one aspect of the test suite for statistical fault localization. Comprehensive testing adequacy criteria supporting effective statistical fault localization and its supporting test case generation techniques are still lacking. Hence, in this work, we aim at finding the set of key features for a test suite supporting effective statistical fault localization through data mining techniques. Based on that, we propose a set of testing adequacy criteria supporting effective statistical fault localization. Then, we further propose directed test case generation techniques based on symbolic e

英文关键词: software testing;fault localization;test case generation;test adequacy criteria;test case prioritizatoin

成为VIP会员查看完整内容
0

相关内容

《智能制造机器视觉在线检测测试方法》国家标准意见稿
【干货书】概率,统计与数据,513页pdf
专知会员服务
137+阅读 · 2021年11月27日
【ACL 2021 】ExCAR: 事理图谱增强的可解释因果推理
专知会员服务
47+阅读 · 2021年11月10日
专知会员服务
78+阅读 · 2021年10月12日
专知会员服务
48+阅读 · 2021年8月28日
专知会员服务
49+阅读 · 2021年8月4日
【SIGMOD2021】数据库与人工智能交叉技术综述
专知会员服务
68+阅读 · 2021年7月14日
专知会员服务
31+阅读 · 2020年12月21日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
5+阅读 · 2022年4月8日
开源数据支撑下的人物与装备分析
PaperWeekly
4+阅读 · 2022年3月20日
一纵一横,搭建完整数据分析体系
人人都是产品经理
0+阅读 · 2022年1月30日
已删除
将门创投
10+阅读 · 2018年5月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Towards Fine-grained Causal Reasoning and QA
Arxiv
0+阅读 · 2022年4月15日
Arxiv
110+阅读 · 2020年2月5日
小贴士
相关VIP内容
《智能制造机器视觉在线检测测试方法》国家标准意见稿
【干货书】概率,统计与数据,513页pdf
专知会员服务
137+阅读 · 2021年11月27日
【ACL 2021 】ExCAR: 事理图谱增强的可解释因果推理
专知会员服务
47+阅读 · 2021年11月10日
专知会员服务
78+阅读 · 2021年10月12日
专知会员服务
48+阅读 · 2021年8月28日
专知会员服务
49+阅读 · 2021年8月4日
【SIGMOD2021】数据库与人工智能交叉技术综述
专知会员服务
68+阅读 · 2021年7月14日
专知会员服务
31+阅读 · 2020年12月21日
相关资讯
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
5+阅读 · 2022年4月8日
开源数据支撑下的人物与装备分析
PaperWeekly
4+阅读 · 2022年3月20日
一纵一横,搭建完整数据分析体系
人人都是产品经理
0+阅读 · 2022年1月30日
已删除
将门创投
10+阅读 · 2018年5月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员