The idea of transfer in reinforcement learning (TRL) is intriguing: being able to transfer knowledge from one problem to another problem without learning everything from scratch. This promises quicker learning and learning more complex methods. To gain an insight into the field and to detect emerging trends, we performed a database search. We note a surprisingly late adoption of deep learning that starts in 2018. The introduction of deep learning has not yet solved the greatest challenge of TRL: generalization. Transfer between different domains works well when domains have strong similarities (e.g. MountainCar to Cartpole), and most TRL publications focus on different tasks within the same domain that have few differences. Most TRL applications we encountered compare their improvements against self-defined baselines, and the field is still missing unified benchmarks. We consider this to be a disappointing situation. For the future, we note that: (1) A clear measure of task similarity is needed. (2) Generalization needs to improve. Promising approaches merge deep learning with planning via MCTS or introduce memory through LSTMs. (3) The lack of benchmarking tools will be remedied to enable meaningful comparison and measure progress. Already Alchemy and Meta-World are emerging as interesting benchmark suites. We note that another development, the increase in procedural content generation (PCG), can improve both benchmarking and generalization in TRL.


翻译:强化学习(TRL)的转移理念令人感兴趣:能够将知识从一个问题转移到另一个问题,而无需从零到零学习一切。这保证了更快的学习和学习更为复杂的方法。为了深入了解实地和发现新出现的趋势,我们进行了数据库搜索。我们注意到,从2018年开始深层学习的采用出乎意料地晚于2018年才被采纳。深层次学习尚未解决TRL的最大挑战:概括化。在不同领域之间的转移运作良好,当领域有很强的相似之处(如山区汽车到卡特波尔),而大多数TRL出版物侧重于同一领域内几乎没有差异的不同任务时,则侧重于不同的任务。我们所见到的大多数TRL应用程序都比得更快地学习和学习更复杂。我们发现,为了对实地进行比较,我们仍缺乏统一的基准。我们认为,这是一个令人失望的情况。对于未来,我们注意到:(1) 需要明确的任务相似性衡量。(2) 普遍化需要改进。 推广方法,通过MCTS规划将深层次的学习与记忆结合起来,或通过LSTMs进行记忆。(3) 基准工具的缺乏将基准化工具加以纠正,以便能够进行有意义的比较和衡量进展。 。我们已经的Alchemememmeal-G标准正在形成一个有趣的改进。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
6+阅读 · 2018年4月24日
Top
微信扫码咨询专知VIP会员