In this paper we investigate some properties of the Fiedler vector, the so-called first non-trivial eigenvector of the Laplacian matrix of a graph. There are important results about the Fiedler vector to identify spectral cuts in graphs but far less is known about its extreme values and points. We propose a few results and conjectures in this direction. We also bring two concrete contributions, i) by defining a new measure for graphs that can be interpreted in terms of extremality (inverse of centrality), ii) by applying a small perturbation to the Fiedler vector of cerebral shapes such as the corpus callosum to robustify their parameterization.
翻译:暂无翻译