The Wasserstein distance has become increasingly important in machine learning and deep learning. Despite its popularity, the Wasserstein distance is hard to approximate because of the curse of dimensionality. A recently proposed approach to alleviate the curse of dimensionality is to project the sampled data from the high dimensional probability distribution onto a lower-dimensional subspace, and then compute the Wasserstein distance between the projected data. However, this approach requires to solve a max-min problem over the Stiefel manifold, which is very challenging in practice. The only existing work that solves this problem directly is the RGAS (Riemannian Gradient Ascent with Sinkhorn Iteration) algorithm, which requires to solve an entropy-regularized optimal transport problem in each iteration, and thus can be costly for large-scale problems. In this paper, we propose a Riemannian block coordinate descent (RBCD) method to solve this problem, which is based on a novel reformulation of the regularized max-min problem over the Stiefel manifold. We show that the complexity of arithmetic operations for RBCD to obtain an $\epsilon$-stationary point is $O(\epsilon^{-3})$. This significantly improves the corresponding complexity of RGAS, which is $O(\epsilon^{-12})$. Moreover, our RBCD has very low per-iteration complexity, and hence is suitable for large-scale problems. Numerical results on both synthetic and real datasets demonstrate that our method is more efficient than existing methods, especially when the number of sampled data is very large.


翻译:瓦斯特斯坦距离在机器学习和深层次学习中变得越来越重要。 尽管它受到欢迎, 瓦斯特斯坦距离由于维度的诅咒而很难估计。 最近提出的一个减轻维度诅咒的方法是将高维概率分布的抽样数据投射到一个低维次空间, 然后计算预测数据之间的瓦斯特斯坦距离。 但是, 这种方法需要解决Stiefel 方块的最大问题, 这在实践中非常具有挑战性。 直接解决这个问题的唯一现有工作是 RGAS (Riemannical Gradient Ascent with Sinkhorn Iteration) 算法, 它需要解决每个迭代中最常态的最佳运输问题, 从而对大规模问题来说成本昂贵。 在本文中, 我们提议一个里曼方块协调下行( RBCD) 方法来解决这个问题, 它基于对常规化的峰值问题进行创新的重新校正重校正重校正重校正重校正重。 我们显示 RBCD $ 的计算操作的复杂性( Rinkical) 和 美元 特别Sain 的常价 的计算方法, 都显示, 。

0
下载
关闭预览

相关内容

Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
0+阅读 · 2021年3月8日
VIP会员
相关VIP内容
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
61+阅读 · 2020年3月4日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员