This paper analyzes a popular loss function used in machine learning called the log-cosh loss function. A number of papers have been published using this loss function but, to date, no statistical analysis has been presented in the literature. In this paper, we present the distribution function from which the log-cosh loss arises. We compare it to a similar distribution, called the Cauchy distribution, and carry out various statistical procedures that characterize its properties. In particular, we examine its associated pdf, cdf, likelihood function and Fisher information. Side-by-side we consider the Cauchy and Cosh distributions as well as the MLE of the location parameter with asymptotic bias, asymptotic variance, and confidence intervals. We also provide a comparison of robust estimators from several other loss functions, including the Huber loss function and the rank dispersion function. Further, we examine the use of the log-cosh function for quantile regression. In particular, we identify a quantile distribution function from which a maximum likelihood estimator for quantile regression can be derived. Finally, we compare a quantile M-estimator based on log-cosh with robust monotonicity against another approach to quantile regression based on convolutional smoothing.


翻译:本文分析了机器学习中使用的流行损失函数, 称为log- cosh 损失函数。 使用此损失函数出版了一些论文, 但文献中至今没有提供统计分析 。 在本文中, 我们展示了日志损失的分布函数。 我们比较了它与类似分布的比较, 称为 Cauchy 分布, 并进行了各种统计程序, 其属性特征。 特别是, 我们检查它相关的 pdf、 cdf、 概率函数和 Fisher 信息。 侧侧边我们考虑Cauch 和 Cosh 分布以及位置参数的 MLE, 且有失色偏差、 损度差异和信任间隔。 我们还比较了其他几项损失函数的强度估计符, 包括Huber 损失函数和级别分散函数。 此外, 我们考察了对四分法函数的缩放函数的缩放函数 。 特别是, 我们找到了一个微缩放分布函数, 可以从中得出最小可能的 缩放回归估计值 。 最后, 我们比较了基于日志的平整平调的微调平整平整调平整平整调的微调平整方法 。

1
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
机器学习损失函数概述,Loss Functions in Machine Learning
专知会员服务
83+阅读 · 2022年3月19日
【2022新书】机器学习基础,225页pdf,Machine Learning The Basics
专知会员服务
51+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员