Large Language Models (LLMs) have demonstrated remarkable success in various natural language processing and software engineering tasks, such as code generation. The LLMs are mainly utilized in the prompt-based zero/few-shot paradigm to guide the model in accomplishing the task. %\textbf{Goal:} GPT-based models are one of the popular ones studied for tasks such as code comment generation or test generation. These tasks are `generative' tasks. However, there is limited research on the usage of LLMs for `non-generative' tasks such as classification using the prompt-based paradigm. In this preliminary exploratory study, we investigated the applicability of LLMs for Code Clone Detection (CCD), a non-generative task. %\textbf{Method:} By building a mono-lingual and cross-lingual CCD dataset derived from CodeNet, we first investigated two different prompts using ChatGPT to detect \textcolor{black}{Type-4} code clones in Java-Java and Java-Ruby pairs in a zero-shot setting. We \textcolor{black}{then} conducted an analysis to understand the strengths and weaknesses of ChatGPT in CCD. %\textbf{Results:} ChatGPT surpasses the baselines in cross-language CCD \textcolor{black}{attaining an F1-score of 0.877 } and achieves comparable performance to fully fine-tuned models for mono-lingual CCD, \textcolor{black}{with an F1-score of 0.878}. Also, the \textcolor{black}{prompt and the} difficulty level of the problems has an impact on the performance of ChatGPT. \textcolor{black}{Finally,} we provide insights and future directions based on our initial analysis
翻译:暂无翻译