To recognize the masked face, one of the possible solutions could be to restore the occluded part of the face first and then apply the face recognition method. Inspired by the recent image inpainting methods, we propose an end-to-end hybrid masked face recognition system, namely HiMFR, consisting of three significant parts: masked face detector, face inpainting, and face recognition. The masked face detector module applies a pretrained Vision Transformer (ViT\_b32) to detect whether faces are covered with masked or not. The inpainting module uses a fine-tune image inpainting model based on a Generative Adversarial Network (GAN) to restore faces. Finally, the hybrid face recognition module based on ViT with an EfficientNetB3 backbone recognizes the faces. We have implemented and evaluated our proposed method on four different publicly available datasets: CelebA, SSDMNV2, MAFA, {Pubfig83} with our locally collected small dataset, namely Face5. Comprehensive experimental results show the efficacy of the proposed HiMFR method with competitive performance. Code is available at https://github.com/mdhosen/HiMFR
翻译:为了识别面罩面罩,一种可能的解决办法是首先恢复面罩隐蔽的部分,然后应用面罩识别方法。受最近图像涂漆方法的启发,我们提议了一个端到端混合面罩识别系统,即HimFR,由三个重要部分组成:面罩检测器、面漆和面孔识别。蒙面探测器模块应用预先训练的视觉变形器(ViT ⁇ b32)来检测面罩是否被遮盖过,然后应用面罩识别方法。涂漆模块使用基于Genearial Aversarial网络(GAN)的微调图画图图像模型来恢复面部。最后,基于ViT、高效NetB3骨架的混合面罩识别模块承认面孔的面部。我们用我们本地收集的小数据集,即Face5. 综合实验结果显示拟议的HimFR方法具有竞争性性能的功效。 http://dFRM/M Code.