Code-Switching refers to the phenomenon of switching languages within a sentence or discourse. However, limited code-switching , different language phoneme-sets and high rebuilding costs throw a challenge to make the specialized acoustic model for code-switching speech recognition. In this paper, we make use of limited code-switching data as driving materials and explore a shortcut to quickly develop intra-sentential code-switching recognition skill on the commissioned native language acoustic model, where we propose a data-driven method to make the seed lexicon which is used to train grapheme-to-phoneme model to predict mapping pronunciations for foreign language word in code-switching sentences. The core work of the data-driven technology in this paper consists of a phonetic decoding method and different selection methods. And for imbalanced word-level driving materials problem, we have an internal assistance inspiration that learning the good pronunciation rules in the words that possess sufficient materials using the grapheme-to-phoneme model to help the scarce. Our experiments show that the Mixed Error Rate in intra-sentential Chinese-English code-switching recognition reduced from 29.15\%, acquired on the pure Chinese recognizer, to 12.13\% by adding foreign language words' pronunciation through our data-driven approach, and finally get the best result 11.14\% with the combination of different selection methods and internal assistance tactic.
翻译:代码转换是指在句子或谈话中转换语言的现象。 但是,有限的代码转换、不同语言的电话机和高重建成本,对使代码转换语音识别的专门声学模型形成挑战。 在本文中,我们使用有限的代码转换数据作为驱动材料,并探索一种捷径,以快速开发在委托的本地语言音响模型中传译内部代码转换识别技能。 我们提出一种数据驱动方法,使原始词汇库成为用于培训图形对手机模型的种子词汇,以预测代码转换句中外语词的预发式。 本文中数据驱动技术的核心工作包括一种语音解码方法和不同的选择方法。 对于偏差的字级驱动材料问题,我们有一个内部帮助激励, 学习掌握足够材料的词句中良好的读音规则, 使用图形- 14 语对语音模型帮助稀有的。 我们的实验显示, 内部的混合错误率, 与中国内部的精选语言的精选方法, 以及中国的精选的精选方法, 13 通过简化的英语的精选方法, 通过简化的英语的精选方法, 降低了中文的外选方法。