We present a synthetic prediction market whose agent purchase logic is defined using a sigmoid transformation of a convex semi-algebraic set defined in feature space. Asset prices are determined by a logarithmic scoring market rule. Time varying asset prices affect the structure of the semi-algebraic sets leading to time-varying agent purchase rules. We show that under certain assumptions on the underlying geometry, the resulting synthetic prediction market can be used to arbitrarily closely approximate a binary function defined on a set of input data. We also provide sufficient conditions for market convergence and show that under certain instances markets can exhibit limit cycles in asset spot price. We provide an evolutionary algorithm for training agent parameters to allow a market to model the distribution of a given data set and illustrate the market approximation using two open source data sets. Results are compared to standard machine learning methods.
翻译:我们展示了一个合成预测市场,其代理购买逻辑是通过在地貌空间中界定的锥形半代谢数据集的微小变形来界定的。资产价格由对数评分市场规则决定。时间上的不同资产价格影响半代数数据集的结构,从而形成时间变化的代理购买规则。我们表明,根据对基本几何的某些假设,由此产生的合成预测市场可以任意地用来近似一套输入数据中定义的二元功能。我们还为市场趋同提供了充分的条件,并表明在某些情况下市场可以显示资产现价的周期性。我们为培训代理参数提供了进化算法,使市场能够模拟特定数据集的分布,并用两种开放源数据集说明市场近似值。结果与标准的机器学习方法相比较。